ADVERTISEMENT

Home|Journals|Articles by Year|Audio Abstracts
 

Review Article



Biodiversity, mechanisms, and potential biotechnological applications of minerals solubilizing extremophilic microbes: A review

Rubee Devi, Tanvir Kaur, Rajeshwari Negi, Babita Sharma, Sohini Chowdhury, Monit Kapoor, Sangram Singh, Sarvesh Rustagi, Sheikh Shreaz, Pankaj Kumar Rai, Ashutosh Kumar Rai, Ashok Yadav, Divjot Kour, Ajar Nath Yadav.



Abstract
Download PDF Post

The earth’s surface consists of arid, semi-arid, and hyper-arid lands, where life is profoundly challenged by harsh conditions such as temperature fluctuations, water scarcity, high levels of solar radiations, and soil salinity. The harsh environmental conditions pose serious consequences on plant survival, growth, and productivity accessibility of nutrients reduces. To cope with the harsh environments and increase plant productivity, an extremophilic microbe has attracted agriculturists and environmentalists. The extremophilic microbes, adapted to extreme environmental conditions, offer an unexploited reservoir for biofertilizers, which could provide various forms of nutrients and alleviate the stress caused by the abiotic factors in an environment-friendly manner. Worldwide, minerals solubilizing extremophilic microbes are distributed in various hotspots and belong to three domains of life including, archaea, bacteria, and eukarya. The minerals solubilizing extremophilic microbes belong to diverse phyla, namely, Ascomycota, Actinobacteria, Basidiomycota, Bacteroidetes, Crenarchaeota, Deinococcus-Thermus, Euryarchaeota, Firmicutes, and Proteobacteria. Mineral solubilizing extremophilic microbes achieve the mineral solubilization of phosphorus, potassium, zinc, and selenium by secreting special compounds such as organic acid, exopolysaccharides, and different enzymes. Consequently, extremophilic microbes are becoming increasingly important in agriculture, industries and environmental biotechnology as well, paving the way for novel sequencing technologies and “metaomics” methods, including metagenomics, metatranscriptomics, and metaproteomics. The extremophilic microbial diversity and their biotechnological application in agriculture and industrial applications will be a milestone for future needs. The present review deals with biodiversity, mechanisms and potential biotechnological applications of minerals solubilizing extremophilic microbes.

Key words: Agricultural sustainability; Biodiversity; Biotechnological applications; Extremophiles; Mineral solubilization







Bibliomed Article Statistics

31
20
24
21
39
34
41
31
34
46
31
13
R
E
A
D
S

13

16

17

35

53

32

43

16

18

11

10

6
D
O
W
N
L
O
A
D
S
010203040506070809101112
2025

Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Author Tools
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.