Home|Journals|Articles by Year|Audio Abstracts
 

Original Article

JJCIT. 2023; 9(4): 308-327


CAN THE COMBINATION OF FACIAL FEATURES ENHANCE THE PERFORMANCE OF FACE RECOGNITION?

Lakhdar Laimeche, Issam Djellab, Mohamed Redjimi.




Abstract

The field of computer vision and pattern recognition has shown great interest in facial recognition due to its wide range of applications. These applications span across historical and genealogical research, forensic science, searching for missing family members, analyzing social media, automatically managing and annotating image databases, and identifying kinship relationships. This research paper aims to address the challenges associated with facial recognition by introducing two innovative approaches: Fusion-based Classifier Combination (FCC) and Sequential CNN Deep learning-based face recognition (S-CNN). In the first part of the study, we assess the effectiveness of three techniques: Local Binary Patterns (LBP), Histogram of Oriented Gradients (HOG), and a hand-crafted learned technique called Compact Binary Facial Descriptors (CBFD). To overcome these challenges, we employ a classification step that utilizes a novel multi-classifier combination model. In the second part, we propose a novel method where we extract high-level features from multiple image regions treated as sequential data using ensemble of Convolutional Neural Networks (CNNs). These features are then fed into a Deep Neural Network (DNN) for facial recognition. The experimental results obtained from well-known face databases, including Labeled Faces in the Wild (LFW) and ORL, highlight the competitive performance of both the proposed multi-classifier combination model and the S-CNN deep learning model when compared to state-of-the-art methods .

Key words: Face Recognition, Machine Learning, Deep Learning, Classifier Combination, Ensemble CNN






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.