ADVERTISEMENT

Home|Journals|Articles by Year|Audio Abstracts
 

Original Article



Comparison of Performance of Deep Survival and Cox Proportional Hazard Models: an Application on the Lung Cancer Dataset

Kubra Elif Akbas, Ipek Balikci Cicek, Mehmet Onur Kaya, Cemil Colak.




Abstract

The goal of this study is to compare the performance of the deep survival model and the Cox regression model in an open-access Lung cancer dataset consisting of survivors and dead patients. In the study, it is applied to an open access dataset named "Lung Cancer Data" to compare the performances of the CPH and deepsurv models. The performance of the models is evaluated by C-index, AUC, and Brier score. The concordance index of the deep survival model is 0.64296, the Brier score was 0.128921, and the AUC was 0.6835. With the Cox regression model, the concordance index is calculated as 0.61445, brier score 0.1667, and AUC 0.5832. According to the Concordance index, brier score, and AUC criteria, the deep survival model performed better than the cox regression model. DeepSurv's forecasting, modeling, and predictive capabilities pave the path for future deep neural network and survival analysis research. DeepSurv has the potential to supplement traditional survival analysis methods and become the standard method for medical doctors to examine and offer individualized treatment alternatives with more research.

Key words: Cox regression, deep survival, survival, deep learning






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Author Tools
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.