The development of novel, more efficient antioxidants is one of the most perspective approaches for the treatment of diseases related to oxidative stress. Due to their numerous beneficial health effects, antioxidant peptides draw significant research attention. The aim of this study was to investigate the antioxidant potential of the peptides derived from the Antarctic hydrobionts and the effect of the peptides on key factors of blood clotting. The peptide fractions were isolated from the tissue of the Antarctic hydrobionts by sequential precipitation with perchloric acid and ethanol. All hydrobionts have peptides with antioxidant activity, but their effectiveness is different for different species. The peptides of Antarctic krill are effective at scavenging 1,1-diphenyl-2-picrylhydrazyl radicals, superoxide anion radicals, and nitric oxide radicals, while the peptides of Antarctic jellyfish exhibit metal-chelating ability and hydrogen peroxide scavenging activity. The peptides of Antarctic limpet possess hydroxyl radical scavenging activity and provide a slight membrane-protective activity. In addition, the peptides derived from the Antarctic hydrobionts decreased the amidolytic activity of thrombin and increased the ability of thrombin to polymerize the fibrinogen. Obtained results showed that natural peptides of the Antarctic hydrobionts possess various types of biological activities and can be used as antioxidants or molecules affecting blood coagulation.
Key words: Antarctic hydrobionts, antioxidant activity, membrane-protective activity, thrombin activity, fibrinogen polymerization
|